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EQUILIBRIUM OF A HIGH CURRENT ELECTRON RING IN A
MODIFIED BETATRON ACCELERATOR

I. Introduction

over the last few years, several, laboratories' 7 have been engaged in studies

that are aimed to assess the feasibility of developing ultra high current

accelerators. These studies are mainly motivated by the potential application of

high energy, high current electron beams in nuclear physics research, medical

radiography and the fusion program.

In general, the effort is not directed toward developing novel accelerating

schemes but rather in modifying or improving the existing accelerator technology.

Among the various proposed modifications, the addition of a strong toroidal magnetic

field to a conventional betatron8 ,9 has attracted considerable attention4-7 and the

configuration has been named the modified betatron.

In this paper we analyze and discuss the dynamics of a high current electron

ring confined in a modified betatron configuration. When the intense electron ring

Is surrounded by a finite conductivity wall, its dynamics can be divided, rather

naturally, into three distinct phases: The pre-acceleration phase follows the

injection and trapping of the electron beam. The duration of this phase is short,

typically a few lisec and the conducting wall surrounding the ring can be treated as

perfect conductor. The pre-acceleration phase is followed by the diffusion phase,

which lasts for a time that is oif the order of the magnetic field diffusion time.

During the diffusion phase the self magnetic field of the beam diffuses out of the

metal torus. As a result the electron energy is reduced and the hoop stresses

increase, but at different rates. Therefore, the equilibriumn will be lost if means

are not provided to balance these two effects. The last phase, i.e., the main

acceleration, starts after the self magnetic field diffuses out of the torus and has

a duration that is comparable with the acceleration time. For most of the third

Manucript submitted August 17, 1982.



phase the energy of the ring has increased substantially and thus the effect of the

self fields is appreciably diminished.

The present work addresses the dynamics of high current ring in a modified

betatron configuration. It includes both analytical and computational studies for

"1cold" as well as "hot" electron rings. The main conclusions are: First, if the

energy of the injected electrons is not exactly equal to the energy corresponding to

the equilibrium orbit, which is assumed to coincide with the minor axis of the

torus, the center of the orbit is displaced from the center of the minor cross-

section of the torus. The displacement is proportional to the energy mismatch.

This imposes very stringent constraints on the injector. Second, during the

diffusion of the self magnetic field of the ring out of the chamber, the equilibrium

can be lost if means are not provided to balance the change of the ring equilibrium

radius that arq due to the reduction of the relativistic factor y and the increase

of hoop stresses. Third, the modification in the flux rule for high current rings

3can be ignored, provided that v/Y 0(- Budker parameter) is very small. Fourth,

w.ith the exception of the expansion of the minor cross-section of the ring, finite

emittance does not have any other noticable effect on the equilibrium, and fifth,

considerably higher axial energy spread can be tolerated in high than in low current

rings.

The general and most important conclusion of these studies is that equilibrium

states of high current rings in a modified betatron configuration exist over a wide

range of parameters. These equilibria are realistic and accessible with existing

technology.
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II. Orbit Stability of a Cold Ring Without Surrounding Walls and Toroidal

*1 Corrections

The stability of a single particle orbit, when thermal effects, wall effects

and toroidal corrections are neglected, has been considered previously. Using the

coordinate system shown in Fig. I and assuming that the external field components

vary as

Bz(r,t) B oz(t) {1 - n (r - r0 )/r0}, (la)

Br(r,t) Boz (t) nz/r o, (lb)

r aB
(r,t) f  r'dr' (r', t), (ic)

0 t

and

B0(r) Bo {1 - (r - ro)/ro}, (Id)

it has been determined that for B >> B and v/Yo < < 1 the orbits are stable,

provided that the following condition is satisfied

n 2(B 0 / oz)• (2)

In the above equations B z(r,t) is the axial and B r(r,t) is the radial component of

the betatron field, B8(r) is the toroidal magnetic field, E8 (r,t) is the induced

_ _ _ _3 L-
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Inductive Electric r0 >
Field rb

Electon Rig - B

Figure 1. Schematic of the mnodifiled betatron configuration and system of

coordinates used in the analysis.
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electric field, a is the external field index, r ' are the coordinates of the

center of the electron ring and ns is the self-field index. The self-field index is

defined as

2/ 2 2.~z2

.n u = 2yb z 2 2(v/yo) (c/ o rb)2 (3)

where % 2{ 4we2n0/m} is the beam plasma frequency squared, y0 is the relativistic

factor, fo {.eB /mc} is the cyclotron frequency corresponding to the axial

component of the betatron field, rb is the minor radius of the beam and v is

Budker's parameter, i.e., the product of the number of electrons per unit length

times the electron classical radius.

The electron beam current that can be stably confined in a modified betatron

can be obtained by substituting Eq. (3) into Eq. (2) ani is

Imb < 2.1 (rb/ro)2 yo 3 (Be/B) {KA. (4)

where 00 M V /c. When Yo > > 1, then ro oz/Y ° - c and Eq. (4) becomes

Imb < 7.22 x 1077 rb2yoBo82 {KA}, with rb in cm and B in Gauss.

In addition, it has been shown under the same conditions but with Be 0

(conventional betatron), the beam is stable provided

n < 1/2, conventional betatron. (5)
(Be . 0)



The electron beam current that can be stably confined in a conventional

betatron can be obtained by substituting Eq. (3) into Eq. (5) and is

Icb <4.2 (rb/ro)2 yo3 3 {KA}. (6)

or

Icb< 14 .44 x 1 0 - 7 rb2 YoB {KA},

when Yo > > 1. The ratio of Imb to Icb obtained from Eqs. (4) and (6) is

mrb 2
b =1/2 (Boe/BOZ)Icb

The above relation indicates that for Boe >> B, the electron beam current that can

be stably confined in a modified betatron substantially exceeds the current that can

be confined in a conventional betatron.

The modified betatron stability condition given in Eq. (2) can be easily

obtained from the well known confined equilibrium condition'0

2((b2/nc2 ) < 1, (non-relativistic) (7)

where lb is the beam plasma frequency and nc is the cyclotron frequency. For

relativistic energies and taking into account the self magnetic field of the beam
2b2b becoms

2
b (Y ) -2'

0Y,
self field correction

.. .ii ... . . .. . .. .. . . .. .. . . ....iI i i l d il .. .- la. .. .i i " -- .. .. ...6



and
t

2 2 2
Sc + /9)

Substituting Eqs. (8) and (9) into Eq. (7) we obtain the stability condition of Eq.

(2). The equality sign in Eq. (2) gives the maximum electron density that ca- be

supported at a specific value of B /B and the corresponding equilibrium i nown
o6 oz

as Brillouin flow.1
0

III. Wall Effects on the Macroscopic Motion of a Cold Beam

In this section we analyze the effects of surrounding walls on the motion of

the center of the beam. In the first sub-section, it is assumed that the perfect

conductor that surrounds the beam is a straight cylindrical pipe of circular cross-

section and thus toroidal effects (hoop stresses) are omitted. These effects are

included in the second sub-section.

a. Without toroidal corrections

Consider a pencil-like electron beam inside a straight, perfectly conducting

cylindrical pipe of circular cross-section as shown in Fig. 2. The center of the

beam is located at a distance Ar, Az from the center of the minor cross-section of

the pipe. As a result of the induced charges on the wall, the center of the beam

will experience a radial, outward directed force, which for small displacements,

i.e.,Ar, 6z << a is given by

FE - 2e 2no(rb /a) ae r + e}1 (10)

7



Electron Ring

FB Azz

ro  r

p= 2 Ar 2 + Az 2

Perfect Conductor

Figure 2. Wall (images) forces acting on a pencil-like electron beam,

situated inside a perfectly conducting cylindrical pipe.
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where a is the cylinder radius and no the uniform beam density.

Similarly, as a result of the induced current on the wall, the center of the

beam will experience a radial force that is directed toward the opposite direction

than FE and is given by

F -- B F. (11)
FB 80 FE-

Using the external fields of Eq. (1) and the induced fields of Eqs. (10) and (11),

the equations describing the temporal linear evolution of the beam's center, for

time independent applied fields, are:

Ar + r A; + Y ) (12)
0 0 0 0

and

A; + 2 Az o , (13)
z YO

2 2

where w2 (Qz/y)2(1-n-n -- )' z2  Q ( /Yo2 - ns -)
a a

S so< S)
Soe- eBo/mc, Qoz - eBo /mc, - ymrc and SP is the difference between the

canonical angular momentum of an electron at (r,z) and its corresponding value at

the equilibrium orbit (r 0o). The average is over initial coordinates and

velocities. Equations (12) and (13) do not include the self electric and self

magnetic fields, because both these fields are zero at the center of a straight

9



beam. In addition, the non-linear terms - A; and - o A; have been omitted
r0 YO r0 YO

from Eqs. (12) and (13). These two terms have their origin in the gradient of the

toroidal magnetic field and are considered in Section V. In general these terms are

not significant except in the limit Z r o.r

In Eq. (12), 6y° - 8(0<Spa>/mroc indicates the energy mismatch, i.e., the

difference between the energy of the reference electron (moving along the axis of

the beam) and the energy required for the same electron to move on the equilibrium

orbit (ro,o). The solution of Eqs. (12) and (13), for time independent fields, is

2-2 >  i-i (2 2)/2 ijt, (14)Ar =oz U + icj (-W2 2_ W2)12i(4
2- 2 J1 I z e '

Y o w r ro m

and

AZ = cj (w. 2 
- r2)1/2 eit' (15)

where c is a constant and

j2

2 22 2w -1/2 2 01 /Y~u + o9' ) + + zW +

(16)
2

(Qoe17o) 2) - r "/2

The first term on the RHS of Eq. (14) gives the displacement of the center of

the orbit from the center of the surrounding cylindrical pipe and can be written as

< 6? /
oz /Yo) (1 - n - nsrb /a )mr (17

10



Equation (16) has four roots. Two of them are fast (plus sign) and two are slow

(minus sign). When B0 >> Bz, the slow mode becomes

;- 2 2 2 2 2
22 r zZ oz ozb b (18)
,j2.B ) . B ( .) (1- -n- ) (n-

o8 a8 YO O a a

and the fast mode is * (o8 /Y ). Equation (18) is plotted in Fig. 3 for two values

of external field index. For n > 1/2, wB is negative when 1 - n < 2 < n and

a

2
2 nsrb

for n < 1/2, wB is negative when n < --- < I - n. Negative values

2 aof wB indicate that the beam motion is unstable and the orbit in the r,z plane is

2 2 -3open. Since the parameter nrb /a scales as Y , during

acceleration n srb 2/a2 decreases rapidly. Therefore, in order to avoid the

instability, it is necessary that before the commencement of the acceleration the

parameter nsrb 2/a2 is less than 1 - n when n > 1/2 and less than n when n < 1/2.

This implies that the injected beam current should be limited to

3 2 2I < 8.5 ( - n) $oo a /r {KA} for n > 1/2
00

and

3 2 2
I < 8.5 nB Yo a /r 2 1KA for n < 1/2.

It is apparent that these two constraints are rather lenient.



2

fl x1/2

ns rb
2C

Figure 3. Bounce frequency-squaredas a function of nsrb 2/a2, with the field

22

closed whenw2>
wB >
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The orbit of the ring's center is described by

Ar(t) = [Ar(o) - r] cos ut + A) sin wst + Aro,

Az(t) Ar(o) cos (wBt) + 4(o) sin (wst),

where the initial velocities and displacements are related by

2I
4;(o) 1W - /Q "% 6/)] Az(o),

2 n < 6P >

A(o) -[Wr/(Q /Yo)] Ar(o) + (2Z)rB o6 Q 6 yom ro 0

and

<6Pe> Yomro(v9- ro  oz /yo ).

The predictions of Eq. (18) are in good agreement with the results of computer

simulation shown in Fig. 4. This figure shows four snap-shots of the beam in the

r,z plane. At t - 0 the circular electron beam is injected near the center of the

pipe. The values of the various parameters are listed in Table I. The electron

i* beam current is kept low (1 KA) in order to minimize the toroidal effects. As can

be seen from Fig. 4, the center of the electron beam describes a circle in the r,z

plane with a period of about 188 nsec. For the same parameters Eq. (18) predicts a

period T. - 2w/wB - 180 nsec. These numerical results .re discussed further in the

next sub-section.

The displacement of the orbit's center because of the energy mismatch [Eq.

(17)], imposes very stringent constraints on the injector. This becomes apparent

when we consider some limiting cases. For example, when n = and nrb 2  1, Eq.

(17) is reduced to

13



145 nsec

T T90Onsec

N

T 145 n sec

43.6 56.4
R (cm)

Figure 4. Snap-shots of the electron ring minor cross-section at four

different times. The values of the various parameters are listed

in Table I. The center of the ring's minor cross-section

describes a circle.
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Table I.

Parameters

Beam Energy (MeV) 3

Beam Current (kA) 1

Beam Minor Radius (cm) 1

Beam Major Radius (cm) 50

Torus minor radius (cm) 6.4

Vertical magnetic field (G) 240

Toroidal magnetic field (kG) 2

External field index 0.47

Self field index 0.88

15



-r0 - 2( 8ooy). (19)

r 0
0

Equation (19) predicts that for a major radius r - 100 cm, the ratio 6yo/ ° should
0 00 Y

be less than 1% in order the displacement of the orbit to be less than 2 cm. The

condition 8yo/y < 1% requires that the uncertainty in energy should be less than 35

KeV, when the energy of the injected beam is 3 MeV. Although such a small energy

uncertainty can be attained with sophisticated injectors, there are other factors,

such as space charge and inductive effects, which contribute substantially to the

uncertainty of energy. Although the displacement cannot be eliminated, its negative

impact can be alleviated by elongating the minor cross-section of the torus along

the r-direction.

b. Toroidal Corrections
5 '1 1

The cause of these effects is the finite curvature of the electron beam

orbit. For relative large aspect ratio r o/r b >> 1 beams, the toroidal effects

become important when /y exceeds a few percent. Previous work 12 on toroidal

effects was limited to "bare" rings, i.e., without surrounding conducting walls. In

this sub-section we briefly analyze the toroidal corrections for the more realistic

geometry shown in Fig. 5, i.e., including the effect of conducting wall around the

beam. Since different physics issues are involved in the case of a "bare" and

"shielded" rings, it is appropriate to start our discussion with a bare ring.

Consider on intense electron ring as shown in Fig. 5, but without the toroidal

chamber. At the inner edge of the RHS cross-section of the ring the self-magnetic

field is greater than that of a straight beam with the same parameters, because of

the contribution from the LHS of the ring. At the outer edge of the cross-section,

the self magnetic field is reduced because the contribution from the LHS of the ring

18



Z

Toroidal
Cham ber

Electron
Ring

S E r'. B r

B extElectron S

Ring B

r. j
Figure 5. An electron ring inside a conducting toroidal chamber. Because of

the toroidal effects, neither the self-electric not the self

magnetic field is zero at the geometric center of the ring.
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has opposite polarity than the local field. Thus, the total self magnetic field is

shifted upwards, as shown schematically in Fig. 5. In contrast, the self electric

field decreases at the inner radius and its magnitude increases at the outer radius

of the ring. Thus the self-electric field shifts downwards. As a result of these

shifts neither the magnetic nor the electric field are zero at the geometric center

of the ring.

When the electron ring is surrounded by a perfect conductor, the shift in the

fields discussed above is reduced but additional field components appear as a result

of induced charge and current on the conducting wall. For small ring displacements

from the center of the minor cross section of the torus, the induced fields vary

linearly with the displacement and are identical to those given in Eqs. (10) and

(11), for a cylindrical pipe. Quantitative extension of the previous qualitative

considerations has shown that the fields at the center of an uniform density

electron ring inside a perfectly conducting toroidal chamber of circular cross-

section are
5 '1'

2 2 2
r b rb

irwelnr[ I +-b n-)e + - e (20)ind oo2 r 2 2 rb  r 2 r z'a o r ba o
0

and

2 2 2r b Az e r b 2 r r b I 1 -tne

a ro a o r b
0

where n is the ambient density, B0 =v /c, v is the azimuthal velocity defined by
0 0 0 0

0 oz / 0
o + 2(vl/o)(l + tn airb) (22)

18



and the displacement br,be of the ring from the center of the torus has been

assumed to be much less than a. In addition, the fields given by Eqs. (20) and (21)

have been derived under the assumption that the angular frequency of the electrons

is constant and therefore the electron current density varies proportionally to r.

Using Eqs. (20)-(22), it can be shown that the center of the beam is described

-2 -2
by Eqs. (12) and (13) with w and w replaced by

r z

-2 oz22

r a  
* - nsrb 2/2 ), (23)

YO
r2

-2 oz 2 2
S+ -- (n nsrb /a2), (24)

Yo

and

where

(I - 'n a 2

+2 ( La-) ] -1 (S
o rb (

and

n " n .

The bounce frequency can be found by substituting Eqs. (23) and (24) into Eq.

(18) and is

19



2 2
2 oz )2 (.oz )2 ( - n( b (26)

= oB Yo a 2 s a 2

WJhen n ac/2, for the reasons stated in the paragraphs following Eq. (18), the

orbits are closed (stable) as Y° increases, provided

nsrb /a < a/2

or, for Yo > > I

1<( 4.25 (a)2 (A-- - tna_) Y 3 [KA (27)
r b ''o b

The limiting current given by Eq. (27) is considerably lower than that of Eq.

(4) when Bo8 >> Boz. In addition, in contrast to the current given by Eq. (4), the

current of Eq. (27) is independent of the toroidal magnetic field Bo.

At this point, it is appropriate to return and discuss further the computer

simulation results of Fig. 4. For the I KA, 3 MeV beam the v/y° M 0.0084. Even at

this small value of v/Y° toroidal effects are noticeable. The value of E computed

from Eq. (25) using the above value of v/y and 6.4 for the ratio a/rb is 0.95.
0b

According to Eqs. (23) and (24) the center of the beam will describe a circle
* * 21 / O  r

when a - n = n or for n = - - Ln a/r)6 = 0.467, which is in excellent
2 0o

agreement with the simulation. In addition Eq. (26) predicts a period of 188 nsec,

which also is in excellent agreement with the simulation.

The most striking manifestation of toroidal effects is in the value of betatron

magnetic field required to confine the rotating beam at a specific radius. When the

axis of the beam lies along the axis of the torus, i.e., when Ar - Az a 0, it can be

shown from Eqs. (20) and.(21) that the external magnetic field required for the beam

20



to rotate with a radius r is

B - B {1 + 2v/y (1 + In a/r)},
oz o o b

where B is the magnetic field necessary for a single particle of the same energy too

rotate with a radius r
0

The above expression for the magnetic field is based on the assumption that all

the electrons rotate with a constant angular frequency, i.e., the current density

increases linearly across the beam. If the current density is constant across the

beam, the above expression is slightly modified and becomes

B oz = B {l + 2v/y° (0.5 + In a/rb)}.

For a 10 KA, 2 MeV uniform current density beam with a ratio a/rb = 6.4, the

correction is 55%, i.e., B oz/B = 1.55. This effect is demonstrated clearly by the

results of computer simulation shown in Fig. 6. The three snap-shots of the

electron ring minor cross section in a modified betatron field correspond

to t w 0, 20 and 40 nsec. For all practical purposes, the minor radius of the beam

remains constant. The external betatron magnetic field is 127 G, i.e., - 50% higher

than the single particle field. The remaining parameters are summarized in Table

II.

Another consequence of the toroidal effects is the increase in the radial

displacement of the orbit for fixed energy mismatch and major radius. For

sb22 a
n a/2 and nr /a<< 1, Eq. (19) becomes Ar /r - 2(yo/y ) 0 + - In -). In

addition, the w 2 vs. n r 2/a2 curves of Fig. 3 are shifted to the left and thus the

21



. TIME= 0.00 nsec TIME = 20.00 nsec w TIME 40.00 nsec

E

N 
-

:V:
93.6 .6 R (CM) 13.6 106.4

R (cm) R(cm) R(cm)

Figure 6. Three snap-shots of the electron ring minor cross section in a

modified betatron field. The external magnetic field required to

confine the ring is 50% higher than the single particle field.

The values of the various parameters in this run are listed in

Table 11.

Table II.

Parameters of the uniform current density ring._

Beam Energy (MeV) 2

Beam Current (kA) 10

Beam minor radius (cm) 1

Beam major radius (cm) 100

Torus minor radius (cm) 6.4

Vertical magnetic field (G) 127

Toroidal magnetic field (kG) 1.7

External field index 0.25

22



maximum permissible current that can be accelerated is reduced, as may be seen from

Eq. (27).

IV. Acceleration

After injection and trapping the beam is accelerated to high energy by the

inductive electric field generated by the time varying betatron magnetic field. As

shown in Fig. 7, the acceleration may be divided into three phases

1. Pre-acceleration

2. Diffusion

3. Main acceleration

The pre-acceleration phase occurs for times much shorter than the field
r

diffusion time, i.e., t << t 4 a 6aln ( -2-), hr stecnutvt,6i
D 2 awhr a istecnutvtai

the thickness, a is the minor radius and r 0the major radius of the torus. During

the pre-acceleration phase the self magnetic field of the beam does not have time to

diffuse out of the conducting torus. In the example shown in Fig. 7 the total

acceleration time was chosen 1 msec and the diffusion time 10 usec. The ratio of

the temporal extent of each phase Lo the total acceleration time t/ta is also given

in the figure. It is apparent that the beam spends most of its time in the main

acceleration phase.

During the pre-acceleration phase the metal wall surrounding the beam can be

treated as a perfect conductor. As a result, for small displacement of the beam,

the self flux linking the axis of the electron ring remain constant to lowest

order. This point is discussed further later.

The condition for the major radius of the electron ring to remain constant can

be derived from the conservation of canonical angular momentum
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Figure 7. The three phases of acceleration. In the example shown the

acceleration time is 1 msec and the diffusion time 10 usec.
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my - e extP9 " orv( - r( + A0 S), (28)

where vo is the toroidal velocity, A0xt is the vector potential that describes the

external magnetic (betatron) field, A.5 is the vector pote. tial that describes the

seif magnetic field of the beam and r is the instantaneous radius of the beam.

The self flux linking the ax.s of the ring ts is

s0 2wrA0
s , (29)

and to lowest order is independent of the beam displacement and thus of time See

Eq. (35) . Substituting Eq. (29) into Eq. (28) and using the expression for

rP /Yoz 0 o

VoB w 1 + 2 (v/yo)(0 + Zn a/rb)'

Eq. (28) predicts that r remains constant, provided

IBoz (W) 1 e
t I + 2v/' () +n airb)' - <Bext> (30)0( 0

In equation (30), B (t) is local magnetic field, v is the Budker's parameter,oz

a is the minor radius of the torus, rb is the beam radius and <B ext> is the average

applied magnetic field.

Using the equation

2 o +mc -- -- - -ev.E, (31a)

25



together with

a r Bext> (31b)E <
2c at

equation (30) becomes

aB (r)
I vn<_et>. (32)at 2 r b  at

0

A similar condition has been derived previously1 3.

Equation (32) is the condition that must be satisfied in order for the radius

of the accelerated electron ring to remain constant. For low v/y beams, Eq. (32)

is reduced to the well known flux rule, i.e.,

3B (t)at 7 <B ext>.at 2 at

The correction term ! (1 + In a) in Eq. (32) is very sensitive to the beam
h3 r b

energy. For a 10 kA, 3 Mee beam injected into a 10 cm minor radius torus with

r b a 1 cm, the correction is only 1% and therefore can be neglected. However, when

the energy of the same beam is reduced to 0.5 'eV the correction is 48%, i.e., very

substantial. The design of the accelerator is simplified considerably by choosing

the beam parameters such that the correction term is negligible.

The instantaneous value of Yo(t) may be determined from Eqs. (30) and (31) and

for y 2(t) >> I is

YO(t) (i + 2v/Yo(O)(1 + in a/rb) B oz(t)

(0) [ t + 2v/yo(t) (1 + in a/r (0)

In contrast to the low current beams, in which y0 (t)/B ozt) remains approximately
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constant during acceleration, for high current beams with toroidal corrections the

quantity that remains constant during acceleration is

Yo(t)
(t) 1 + 2v/Yo(t) (1 + In a/rb)} - constant. (33)

Boz(t l

As Yo(t) increases with time, the correction term decreases and Eq. (33) is

reduced Y(r)/B (t) - const.0 oz

Now, we return to discuss the self flux linking the axis of the ring. In the

notation of the toroidal geometry shown in Fig. 8a, the magnetic stream function

5 11rAe s for p < rb is given, to lowest order, by

2
- , 2 A (*p a 3rb

*/Q - 2 In a/r + (1 - P2/rb2 2 p/a a-cos s) + 2b (In rb 4a +b b a R b r b 4 a2

2 - r 2 ) cos , (34)
4 b

where Q - -CeC no0 wr bo 2  Rb 2c, 0 v /r,A2 - Ar2 + Az , no is the uniform density and

it has been assumed that a << r, rb << a and Ar, Az << a.

The self-flux through the axis of ring is

$ , 2n*(p - 0). (3S)

Substituting Eq. (34) into Eq. (35), we get

I , 2wQ (1 + 2 In a/rb), (36)

which does not depend on the displacement Ar, Az of the beam. This is a rather
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unusal result and deserves further discussion.

To gain some insight into the problem, we have computed the flux linking a

horizontal surface s extended from the axis of a straight beam to the inner wall of

a perfectly conducting cylinder of circular cross-section as shown in Fig. 8b. The

beam displacement is arbitrary but the ratio r b/a << 1. It is straight forward to

show that the flux through such a surface of length I is

r 2 +A 2

s = (21I/c) {n (ar) - n( + A (37)

b 2a

where I is the beam current.

2 2 1/2 s
For (Ar + Az ) Ia << 1, Eq. (37) indicates that the flux s has a quadratic

dependence on the beam displacement. Therefore, since only the linear terms on beam

displacement were kept in the derivation of Eq. (34), it is not surprising that the

flux given by Eq. (36) is independent of the displacement of the beam.

When the time approaches the magnetic field penetration time tD, the self

magnetic field of the electron beam starts to diffuse out of the finite conductivity

metal torus. Using the geometry shown in Fig. 9, it is shown in Appendix A, that

for a very thin conductor, i.e., a - b, to lowest order, the self magnetic field of

the beam at time t is

21 t/t
(r,t) - LI - e ], r > b (38)

21
B (r,t) cr -- r <a

where

tD 9.n
D.2 a

c
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Figure 8a. System of coordinates for Eq. (34).
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Figure 8b. A displaced straight electron beam inside a perfectly conducting

pipe. The ima current is located at a distance

a2 /(Ar 2 + AZ) from the center of the pipe.
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Figure 9. System of coordinates used to compute the magnetic field during

diffusion.
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These equations are based on the assumption

that 6/a << I, ((6/b)tn -2) 1 / 2 << I and the inductive electric field varies'b
)

as Ez~r~t) B b B(b,t)

as E (rt) in (), i.e., goes to zero at r - r° (pseudo-toroidalz c at r0
0

geometry).

The self magnetic flux in the three regions is given by

4wr

l1n(a/r b)  r < a

0 0 a< r<b

4wr -t/tD  r

I Lie n r > bC b

and it diffuses out at the rate

s  4wr I -t/t r

-- 0 e n () (39)

The inductive electric field generated by the changing flux given in Eq. (39)

acts to slow down the beam. In addition, for a constant current density ring, the
8r

hoop stresses increase by the ratio (2 + Ln-°)/(l + ln _), and the induced• rb  r b

magnetic field components go to zero at the end of the diffusion. However, the

electric field components remain the same. As a result, for a electron ring that is

situated along the minor axis of the torus, the decrease in its equilibrium radius

associated with the reduction of Yo is greater than the corresponding increase of
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the equilibrium radius associated with the enhanced hoop stresses and thus

equilibrium can be lost. This difficulty can be avoided by placing a set of

external conductors along the minor cross-section of the torus having a poloidal

distribution that closely resembles the distribution of wall currents in a perfect

conductor, i.e.,

Ib acI - - t a1- cos]

w 2na 2r0

where is the wall current per unit length and Ib the ring current.

This compensation is satisfactory even when the beam is displaced off center

and rotates around the equilibrium position with w., provided that WBTD >> 1. The

reason is that the correction term in the fields at the center of the ring, 14 when

the skin depth is much greated than the thickness of the conductor, is

2 - t / T

-2 e smtsin w Bt ,

wB'D

and therefore, it can be neglected. Similarly, when the skin depth is much smaller

than the thickness, the correction term is also small and is given by

2(b - ala + sinw t.
wBiD WBTD B

In addition, we have shown that the components of magnetic field that are

proportional to the displacement of the beam do not diffuse out of the chamber when

2 2 2WT >> Yo2  As a consequence nsrb /a does not increase during diffusion and w
B D 0 sB

does not change polarity. Therefore, the drug instability 14 can be avoided by

choosing the various parameters to give wB > o at the commencement of the diffusion

process.
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During the main acceleration phase the significance of toroidal effects is

reduced because v/y° * o. When B, remains approximately constant as shown in Fig.

10, or increases with time the accelerated beam moves closer to the center of the

minor cross-section of the torus. This may be seen from the beam equations, which

for Boo a contr., are:

r+ +( ) 2 Y2 r S(1o<Y) + > (40)

y *ymr'

// - (no/y)b. (41)

With the exception of the second term (;/y)A;, Eqs. (40) and (41) are identical to

Eqs. (12) and (13). For n 1 1/2, Eqs. (40) and (41) can be readily solved.

Introducing a new variable * - r + ift, these two equations can be combined into a

single equation

• 2 Qoe < P 6 >

*+-( + ) *+ " yn r' (42)
Y o0o

where w 2 0 w 2 The general solution of Eq. (42) is

1 ' + *2 + 4p

where a1  f +()dt

0$I o 2 2 1/4

1 /2 + 4 w]

a e t . (O)dt
*2 2 2

Y1/2[( ) + 4 2 ]1/4
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Figure 10. This figure illustrates a possible time dependence of the toroidal

and betatron fields. From the stability point of view other time

variations are more appropriate.
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and

-o 9, ) 19> d tVo <P> t
t mr 2 t Y ymrsp 0 +Lf0*p *1 f  w(1 2+ 2 f  w (,1 ' 2 P )

In the above equations w - + 2 0wand w(, 1 2) is the Wronskian

of the two independent solutions * and *2 of the homogeneous equation.

Since the denominator of * and 2 increases, when the betatron field

increases in time, the center of the beam moves toward the center of the minor

cross-section of the torus during the acceleration.

V. Grad B Drift in the Modified Betatron

Until now we have neglected in our analysis the radial gradient in the toroidal

magnetic field, B .  In this section we consider carefully the effect of this non-

linearity on particle motion, assuming that it is the dominant non-linear effect.

The linearized equations of motion of a particle located at r - r +

Ar + 6r, z = Az + 6z where Ar and Az are the beam position with respect to the

center of the torus (See Figure 11) are

2.. 2 2 rb r I  , 6P 8

rI + (1- n) zo r1 - ns zo (tr + Ar) = 0 - r i + zo Y mr
a 0 o 0

2 (43)2 - r b  r 1

z + n.o2 z -n S1 (6z + - Az) - - (1 - -) rl
1 zo 1 s zo 2o r

a 0
where

r I = Ar + 6r,
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Figure 11. System of coordinates used to analyze the drift resulting from the

gradient in the toroidal magnetic field.
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z, A z+ 6z,

zo Oz I o'

00zo o/ Yo"

Choosing n = simplifies the subsequent analysis. !taking this choice and

defining V - r + iz gives

2
_L 2 2 rb

I 2 z I - s zo 2(6 2
a

Re I S P
- ioe r ' 1  + a  (44)

T~ ~'i zo y mr

We proceed to solve (44) perturbatively, assuming Re* << rO .

The zero order equation, neglecting the non linearity, is easily solved. First

an average is performed over initial positions and velocities of the particles to

obtain a single equation governing the motion of the beam center, &4. Denoting this

average by brackets we will have <*> - 0 by definition and, it may be shown that as

long as no kinks develop in the beam <6,> - 0 - <S>. Once the averaged equation is

obtained it may be subtracted from (44) to obtain an equation for 6%0. Carrying out
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this program, we find for the zero order solution:

" 2 + Ae +Be ,

Yomro ' rbzo o (0 2 ns)

a
(45)

(P - <SP -iw3t -i'w4tsip0 I + Ce + De

yomr (1- n)

where A, B, C, and D are arbitrary complex constants and where the frequencies

W,-- w 4 are given by

2 1rb

1,2 2 08 o 60  zo 2 a

Q 2 + 4 zo2 (4 n)) 2 ].
-3, 2 0 (6 zo 2

We shall take subscripts 1 and 3 to correspond to the + signs.

2

In writing (45) we have assumed that neither - ns) nor
a

- n) is zero. If either of these quantities does vanish (corresponding

physically to the vanishing of net radial restoring forces) the corresponding

solutions to (44) grow secularly, indicating a curvature or centrifugal drift in the

vertical direction. Below we assume that the radial restoring forces do not vanish

for either beam or particle motion. In addition we shall make the assumption

that <6"e- a 0. This is the same as the requirement that the equilibrium position

of the beam be at the center of the minor cross section of the torus. This

assumption has no effect whatsoever on the basic physical results and conclusions

but does simplify the mathematics somewhat.
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We may return to (44) and calculate the first order correction to the beam

position, A*( 1 ). The equation to be solved is

2

() 2 1 r b (1)+ +ia 0  + zo (T --- l 2 n
a

(47)

i <[Re * t( ° 1 ] 7o)"

Substituting from (45) we find the right hand side of (47) is

2 2 -i(W.t- a.< [Re *l1] () 1-i 1 1 wj Pj 9ke cos(wkt- 00

J-i 1 k-i
4 2 (48)

2~ E 2 <2 j-3 ]

where we have defined

iaJA, B, C, D -- oei ; j =1, 2, 3, 4,

and where we have assumed that

<C> f <D> - 0.

From (47) and (48) we can see that apart from oscillating terms the net effect

of the radial gradient in B8 is to cause an outward shift in the equilibrium

position of the beam:

(o_-) < W jj >

1 2r 0 2 1 2 + oscillating terms. (49)
r

2 (1 b
zo -Z --2 - ns)

a
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This result is simply understood as the result of a balance between the outward,

"diamagnetic" force (which tends to expel the beam from the high field region) and

the irward radial restoring force.

Since the P values in (49) depend on the details of the injection process, it

is difficult to draw practical, quantitative conclusions from this result. However

it is probably safe to conclude quite generally that any device should be designed

so that 1 >> n for all times, or
2 a 2 ~s

v/yo << 1- (Yo~zoa/c) (50)

for the case of a perfectly conducting wall. The y should be omitted in the

parentheses on the right hand side of (50) in the case of a poorly conducting wall

(diffusion time short compared to a beam oscillation period). We note that the

constraint in (50) is independent of the strength of the toroidal magnetic field.

Twu dimensional computer simulations bear out our claim that self consistent

beam equilibria exist in the presence of a gradient in B0 aslnasteetrdl

focusing forces (proportional, basically, to the denominator in (49) but generalized

to include the case n *-and to include toroidal corrections to the self fields)
2'

do not vanish. In Figure 12 we show a succession of "snapshots" of a beam cross

section, which remains in its equilibrium position for significant times compared to

r/,,where VD is the single particle drift velocity, I
b2

V D =e Q 0P 2/r

and where p is a particle gyradius. No drift is observed. (This is nut just a
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Figure 12. Four snap-shots of the electron ring minor cross-section. The

values of the various parameters used in this computer simulation

run are shown at the top of the figure.
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visual observation but is obtained from a plot of average particle position vs.

time.)

In Figure 13, on the other hand, we present a case in which net radial focusing

does nearly vanish. Loss of confinement is extremely rapid under such conditions.

The ring drifts vertically with an average speed of 0.25 cm/nsec.

VI. The Effect of Emittance

Up to this point, we have dealt with the eqiations describing the motion of the

center of an electron ring in a modified betatron configuration. In this section,

we discuss the effect of the finite emittance on the equilibrium of the gyrating

electron ring using the beam envelope equation. When the major beam radius r is
o

large, n 0 , yo constant, - << 1, the energy mismatch 6y° - 0 and the effect of
21 0

surrounding walls is neglected, the beam envelope equation in the paraxial

approximation for Bo0 >> Boz becomes 13 in the Larmor frame of reference.

r. + L Boo9 2 2 v/yo 3  C2 ,(1

b(S) 2 (oFea ) r b(s) - 2/ 0  2
r oz o2rb(s) r b (S)

where e is the beam emittance (unnormalized), s - er is the length along the minor0

axis of the torus and rb (s) - drb/ds. For a zero emittance beam the motion of the

particles is laminar and the equilibrium is called either laminar flow or Brillouin
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flow. The equilibrium radius in this ease is obtained from Eq. (51) by setting

r b - 0-0

and is

I
2 2c 2v 2r-(- (52)

b,eq oe To

when y0 > > 1. For a finite emittance beam, the equilibrium radius can be determined

from Eq. (51) by taking rb (s) - 0 and is

1

S- 2 Py 2--1
f2e o [(V) + 12 2  (53)

'b,eq oe P 08Y O2

For small envelope oscillations rb = rb,eq + d, with 6/rb,eq << I and Eq. (51) gives

S- "+ 2[((lS1O2.yc) 2 + 21/r 4 6 0
b,eq] ,

that has a period

S22/c (54)T "2[(n 12yoC) 2 + 3 e 2/rb 4 1/2 "

0 b, eq

The effect of emittance on the equilibrium of the ring has been studied

extensively using a computer simulation code. Numerical results from the computer

simulation are given in Figs. 14 to 17. For a beam with ya - 7, I - 10 KA,

r - 100 cm, Boz - 160G, Bo9 - 1415G, Eq. (52) predicts that the equilibrium radius

for the Brilluin flow is I cm. The numerical results of Fig. 14 give also a radius

of I cm, that for all practical purposes remains constant in time. In this run the
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Figure 14. Root-mean distance of the electrons from the center of the ring as

a function of time, when the emittance, £, is zero.
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Figure 17. Root-mean distance of the elctrons from the center of the ring.

The envelope oscillations are drastically reduced when the

toroidal magnetic field is increased from 1413 G to 1830 G.
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electron beam is injected into the torus with a rotational frequency that is half of

the local cyclotron frequency. Figure 15 shows the envelope in time of a non-

rotating beam. The various parameters in this run have the same values as those in

Fig. 14, except now the emittance is non-zero in the Larmor frame. For the

equivalent emittance of e - 50 mrad-cm, Eq. (53) gives an rb,eq 1,21 cm and the

numerical results 1.24 cm. Similarly, Eq. (54) gives period of 2.13 nsec and the

numerical results 2.28 usec. Snap shots of the beam cross-section from the same run

are given in Fig. 14. The oscillations observed in the run of Fig. 15 can be

avoided by "matching" the beam, i.e., by raising the Boe magnetic field to 1830G.

This value of magnetic field gives an rb f 1 cm, which is the radius of the beam

for Brillouin flow. Numerical results from this run are shown in Fig. 17.

The electron beams discussed so far in this section were monoenergetic with

finite emittance. Such beams have an axial velocity spread equivalent to that of a

cold beam with energy spread Ay that is given by1 5

y 2 r b

Actual or equivalent energy speed in the direction of beam propagation has an

important effect on the dynamics of electrons as may be seen as follows. The

equations describing the motion of individual electrons in cylindrical geometry are

identical with those describing the motion of the center of the beam, provided that

-2 2
w and z are replaced byr z

2 oz2
W r (-) ( - n n ),

Yo
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and

<SO> c2

rmr r yo

Yomro o oz

The above set of equations are based on the assumption that toroidal effects can be

neglected. In addition, it should be emphasized that Ay is thermal energy spread

and not the energy mismatch 6y° discussed in Section III.

1
For n 1, the solution of the individual particle equations are

(Y - coswBt)
r r - 6r coswBt - 6z sin wBt + ro YO (55

2 s

AY sinw Bt
6z" 6z 0cos t + 6rosinwBt - r ° Y (56)

2 ns

where

Q Bozz
B - (1/2 - n

According to Eq. (55), when n << 1, i.e., for low current beams, thermal effects5

increase substantially the minor radius of the beam. In such beams the minor radius

varies as 2r Ay/Y

In contrast, when n >> 1, i.e., for high current beams, thermal effects do nots
r

change significantly the minor radius of the beam, which varies as (-)
n sY0

The effect of the axial energy spread on the minor cross-section of the beam in

a modified betatron geometry has been studied numerically. Results from both the
high and low current beams are given in Fig. 18. In these two runs the various

parameters have the values listed in Table III. In the high current beam case the

minor radius expands by approximately a factor of two. However, in the low current
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Figure 18. Snap-shots of the electron ring minor cross-section for low and

high current. The values of the various parameters for this run

are listed in Table II. The energy spread in both cases is 10%.
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Table III.

Parameters Low Current High Current

Beam Current (kA) 0.1 10

Beam Energy (MeV) 3 3

Energy Spread (1) 10 10 p
Major Radius (cm) 100 100

Beam Minor Radius (cm) 1 1

Initial Betatron Field (G) 116 146

Toroidal Field (kG) 1.4 1.4

External Field Index 0.5 0.35

Self Field Index (n S) 0.37 23.4

Torus Minor Radius (cm) 3.2 3.2
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beam run the beam expands significantly and strikes the wall. Therefore, a

substantial energy spread can be tolerated in high current beams without a

catastrophic expansion of the minor radius of the beam. Such energy spread may be

required to stabilize the various disruptive instabilities.
16-1 8

VII. Summary

In this paper we review the dynamics of ultra-high current electron rings in

the modified betatron configuration. Our discussion addresses mainly the evolution

of the electron ring after injection. The formation of the ring during injection

has been analyzed and reported previously.
19

Our work includes both analytical and numerical results for "cold" and "hot"

rings. The conclusion of these studies is that equilibrium states of ultra-high

current rings in a modified betatron exist over a wide range of parameters. These

equilibria are realistic and accessible with state of the art injectors.

The results present.ed in this paper are based on several simplified

assumptions. Among them, we have assumed that the various fields are free of

errors, the conducting wall that surrounds the electron ring was assumed to be

smooth, i.e., without ports and gaps and the external field index was assumed to be

constant in time and space. The consequences of these assumptions is presently

under investigation.
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Appendix A

Diffusion of the self magnetic field of the beam through a conducting

liner.

The purpose of this appendix is to briefly outline the calculation of the

diffusion of the self magnetic field of the beam through a conducting liner.

To simplify the analysis, it is assumed that the electron beam is located

along the axis of a straight, circular cylinder of inner radius a, outer

radius b and thickness 6 - b-a, as shown in Fig. 9. In addition, it is

assumed that the current of the electron beam is a step function that is

turned-on at t=Q. Since the problem of interest is that of an electron ring

inside a torus, it is further assumed that the axial inductive electric field

goes to zero at rr 0 , where ro is the major radius of the torus.

Neglecting the displacement current (quasi-static approximation) , the

fields inside the cylindrical conducting shell (a < r < b) are given in MKS

units by

V X H =J, (A-1)

V *B =0, (A-2)

VxE at'~. (A-3)

and

J oE, (A-4)

where J is the current density, H is the magnetic field, B is the magnetic

induction and a the conductivity of the conductor.

Assuming that all quantities are independent of z and 4 , Eqs. (A-i) to

(A-4) can be combined to give a diffusion equation for the azimuthal component

of the magnetic field
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a -- l Cr(r H (r,t)) ] = o m (r,t) (A-5)

For r < a and r > b, the conductivity is equal to zero and Eq. (A-5) becomes

a [  (r H, (rt))I = 0 , (A-6)

with the only acceptable solutions

(r,t) 2 (t), r < r < a (A-7)
2 'r b

HO (r,t)- H (b,t) b/r, r > b (A-8)

where e(t) is the step function, and rb is the beam radius.

To complete the specification of the problem we have to introduce

boundary conditions. From Eqs. (A-3) and (A-8), we get

Sz H (b,t)z L h
at r

which after integration yields

aHd (b,t) r
E (r,t) = bin , (A-9)

0

where we have assumed that E (r,t) is zero at r-r0 .

Combining Eqs. (A-1), (A-4) and (A-9) at r-b,we obtain the first boundary

condition, namely

(rH)r-b ) -]- (b,t) b n b. (A-10)r at r0
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The second boundary condition is furnished from the continuity of the magnetic

field at r - a, i.e.,

I_ _O(t) - HO(a,t). (A-11)

Since the magnetic field is zero at t-0, Eqs. (A-5), (A-9) and (A-10) take the

following forms in their transformed state

2 r 3r - 2 par r

3 arpH ( b2 n b (A-13)3r .-b r0 '

and

2 - -= € (r , t) ,(A- 14)
-i r-a

where, the Laplace transform of He is defined by

HO (r,p) f I e-HO (r,t) dt, Re (p) T.
0

Equation (A-12) is the modified Bessel equation and its solution is

R 0 (r,p) - AII(1r) + BK1 (Nr)

2
where A and B are constants and X . oup.

The two constant coefficients A and B are determined from Eqs. (A-13) and

(A-14) and are:
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A - 2ap ( Ab) + lb Ln K (b)

B = ( - I o(b - Xb Ln b_ II(Xb)l
,, P)10(Ab) rAi-(Lr0

where

A = Ko(Ab) I, (Xa)+Io(Xb)K(Xa )+Xbtn-Lo [K1 Ob) I! (a)

- KI(Xb) II (b)]. (A-15)

The magnetic field in the region a < r < b as a function of space and time can

be obtained by inverting the Laplace transform, i.e.,

c+i- ePt
RH(rt) - y fc dP {[K0(Xb) + b En U--lK b) I,(Xr)2napA r

0

+ [ I ( b) - b fn b! b K ()r)} (A-16)

where the path of integration is a vertical line in the complex p-plane to the

right of all singularities of the integrand.

Equation (A-16) has a simple pole at p-0 of residue a/r and an infinite

set of simple poles at A-0.

Contour integration of Eq. (A-16) gives

' 2

H (r,t + e 0 [Y') (oa b) J a r) - Y(ar) a ,b)

+ a b In L [Y (a b)j (ar 0 Y(a r) J (a b /(D) (A-17)
8 r0 1 I 1 Is( w
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where u P o, A - ia, Y,J are the Bessel functions, a are the roots of

equation

Y (a b)J (a a) - Y (a a)J (a b) + a b In b [ (b)J()
Os s1 1s O s r0 1 8 1  a

- Y1(caa)J 1(asb)] = 0, (A-18)

and

D -1 a [Yo(ab)Jo(aa) - Y(a a)J (a a)
s !da1 s Os O s s I Is

CL-Ms

- Y(asa)Jl(ab)] + asb in {b a[Y0 (a b)J (a
sa) - Y(a sa)J0 (asb)]

+ a a [J0 (asa)Y1 (asb) - Y0 (a a)J 1 (asb)J}.

For a a >> 1, Eq. (A-17) is reduced to5

I A - a 2t/ au

S= 1
2-r rsr -1

+Qb n! in 1I-)]/ 6 8i'( ) - a 2 b nb Cos a (A-19)

where a are now the roots of

cos (a 6) + a b In 1L sin (a 6) - 0. (A-20)s s r s

Equations (A-19) and (A-20) can be further simplified when a <4 1. In this

case
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R(r.t) T- aCo a-b +abI sin a(-)a as(b-r)J

2_-G t/a 0

• 0

which at r-b, becomes

H (b,t) - 2 {1 -e

where

a 2 1 (A-21)s btnr 0 '

Therfore, to lowest order, the magnetic field in the region r > b is

= % 2 t/o 0

R (r, t) 11 - e t 1, r > b, MKS (A-22)

or

H (r,t) - 21 1 - e. tc 24A CGS (A-23)

Under the same approximations, the electric field at the inner edge (r-a)

of the conducting shell is

22zat , r 0  -a 2tlop0

E2 (at) m -(L--) e MKS (A-24)

(r 22o9

E z( a t )  f2waO as In (- - ) a CGS
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Since the electric field is uniform in the region r < a, Eq. (A-24) gives also

the electric field that acts on the beam. Substituting Eq. (A-24) into the

energy rate equation

2 dy__
mc -e ev -E,

we obtain for highly relativistic beams

______ I_- - n A-25)

For -- 10 and- 0. 1, Eq. (A-25) gives -0.46, i.e. , a substantialb

reduction in the energy of the beam. H~owever, for highly relativistic beams

v z c and thus the current of the beam remains approximately constant.
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Appendix B

Description of the Particle in Cell Computer Code

The NIL modified betatron accelerator is designed f or a maximum /yo is 0.1,

i.e., the current is high enough so that the self-fields of the ring, can exceed the

externally applied fields. A realistic theoretical description must therefore self-

consistently include the beam's self fields as well as the effect of surrounding

walls. Since this is difficult analytically, particularly if the ring is displaced

substantially from the center of the minor cross-section of the torus, numerical

simulations are useful both in gaining insight into the important physical processes

as well as to provide a method to check the applicability of specific assumptions in

an analytic model.

The dynamics of the accelerated electron ring are determined by forces that

vary on a number of different time scales which range from the electron cyclotron

period, i.e., a few nanoseconds to the beam acceleration time, which is of order a

millisecond. The code described here is taylored to simulate efficiently the

various phenomena on the intermediate time scale. This time scale is characteristic

of the drift (bounce) motion of the ring after equilibrium has been established,

rather than the rapid evolution occuring at injection. Simulation of a single turn

around the major axis that lasts about 20 nsec using 4K particles on a 64 x 64 grid

and typically takes about one minute on the 'L Texas Instruments ASC.

The simulation code is r-z, spatially two dimensional, i.e. *0, but with

three velocity components. Although Be is used in calculating the particle

trajectories, it is not solved self-consistently, i.e., is assumed to be generated

from external coils only. This assumption is valid to first order in v/y. The

radiative term (displacement current) is also ignored, i.e., the code uses the
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Darwin model for Maxwell's equations.

The electrostatic potential is computed from Poisson's equation

V2 0 p/E, (B-1)

and the magnetic vector potential from

A@

22A - - je (B-2)

with the boundary condition 0 - Ao  0 at the conducting wall.

Equations (B-i) and (B-2) are solved by Fourier decomposition in the z-

direction and then by Gaussian elimination of the resultant tridiagonal matrix of
2

equations obtained from a 3-point differencing scheme for Vr . The inverse Fourier

transform yields A and 0 on the grid. Note that the 8 particle velocities are

advanced using the conservation of cannonical momentumn in the 6 direction, the

equation for A is therefore not properly time centered since the velocities from

the previous time step are used to calculate the currents from the cannonical

momenta. This method was chosen primarily for its speed and simplicity but care

must be taken in applying the code when the inductive acceleration of particles in

the e direction is significant.

If boundary conditions other than A 8 or 0 equal zero on a rectraqular grid are

desired, it is possible to obtain relatively arbitrary boundary conditions using the

capacitive matrix(Buneman) technique. In this method a matrix is generated which is

the Green's function for discrete "wall" points within the system. Then at each

time step the field solver described above is used. The potential at the discrete

(wall) points is obtained. By multiplying this vector potential by the invense

matrix obtained previously a set of (wall) currents or changes is generated, which
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is used to specify the wall potential. These "wall" sources are then added to the

original beam source and the field solver is used again. The result by the

principle of superposition is correct inside the system and has the correct boundary

condition on the '"all".

Particle Push

The motion of the electrons is governed by the Lorentz force

d( y) _ ( + - x B)

m0
E V

where E and B are the total electric and magnetic field respectively.

In component form the equations used to update the velocities and positions at

each time step are

PA
'V -r- m -m 6A (B-3)

d(yV ) We2
r -- (Er+ V x B - V x e) +

dt m r 6 (B-4)

0

dr V (B-6)

dz

d- v 
(B-7)T z

Equation (B-3) is used at each timestep to compute y V.. Equations (B-4) and (B-5)

are coupled. To advance these velocities a leap-frog scheme is employed. At time

t all fields, positions and Ve are known exactly. Vr and Vz however are known at

t+l and the velocities will be advanced to t+1/2. Before the equations are
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differenced, it is convenient to rewrite the equations in terms of the relativistic

momenta. Letting

U =YV

the equations (B-3), (B-4) and (B-5) can be written as

U P e - - AOUe m r m (B-3a)
0 0

dU U
-r ( ( + U 6x B z- Uzx B ) + (B-4a)

dU
dt O (  Ux Br + r B ) (B-Sa)

dr _ r
dt y (B-6a)

dz = __ (B-7a)
dt y

This formulation is then differenced by substituting

+ / -t-1 / 2 dT
U+ 1/2-U for d6

dt

and

,t+1/2 +t-1/2
2 for U.

After making these substitutions in equations (B-4a) and (B-5a) it is straight-

forward, if somewhat tedious, to solve the two coupled equations for Uz t+1/2 and
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Urt+1/2. Since Ur and UZ are calculated at the half-timesteps while U8 is known at

the full timesteps, y is not known at time t. This difficulty is overcome using

iteration.

After advancing the velocities the particle positions are advanced using a

simple centered difference

t +i rt _U r
r r + ST . -- ,

Y

and

t+l t z
z =z + ST. .

Once all the velocities and positions are found the new current and charge densities

are used to update the fields and a new time step begins.
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